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Abstract. A straightforward uniform estimate has been made of the difference between the 
Jost functions corresponding to scattering of one particle by two close potentials within the 
region Im k 3 0. The Jost function for an approximating piecewise potential was found by 
developing a very simple technique of fitting. The exact solution of the original problem can 
be represented as a uniform limit of the n-fold product of 2 x 2 matrices at n + W .  

Let f j * ’ ( k , r )  and 4 , ( k ,  r )  be the solutions of the Schrodinger equation 
u ” ( r ) + [ k 2 -  V(r)+1(1+ 1 ) / r 2 ] u ( r ) =  0 which are normalised by the conditions 
lim,+m (f/*) esikr) = 1 and lim,,o (c#q/r’+’) = 1. Let us define, in accordance with New- 
ton (1964), the Jost function g l ( k )  by 4 ( k )  = (21 + 1) lim,,;(r’fr‘+’). Denoting by tilde 
the same quantities corresponding to another potential V ( r )  which, just as V(r) ,  is 
assumed to satisfy the condition for the existence of J: I V(r)/rdr, one can derive the 
integral representation for 9 1 ( k )  given by 

00 

P [ ( k ) - & ( k ) =  1 AV(r)&(k, r ) f i+ ) (k ,  r )dr ;  AV= V-G’. (1) 

We estimate the right-hand side of equation (1). It is known (Newton 1964) that the 

0 

functions 6, and f/” satisfy the inequalities 

where v = Im k and 

We readily come to the following proposition having denoted 
max{) VI, I G’l} and M = 

= max{cr, Cl}, V(r)  = 
exp{C JT r V ( r )  dr}. 

Proposition 1. In the half-plane Im k 2 0, the Jost functions 9l(k) and & ( k )  satisfy the 
following uniform estimate: 

p I ( k ) -  @@)I < €M (2) 
where 

E = lom / A  V(r)l dr. 
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It is interesting to mention that the theorem reveals the exact meaning of the well 
known statement that the scattering amplitude depends solely on the global properties 
of the potential (e.g. Newton 1964). 

Now we divide the region (0, CO) into intervals slj = ( r j - l ,  Ti), where 0 = to< rl  < 
. . . < rn i l  = 00 and for v(r) we take the piecewise potential to be of the form v(r) = V,(r) when r E and j = 1 , 2 , .  . . , n + 1. Let the function 4 1 ( k ,  r ) ,  normalised to 

r'+' when r+O,  be the regular solution of the Schrodinger equation involving the 
potential Vl(r) for r E 0,.  Let us denote by d;"', for j = 2, . . . , n + 1 and a = 1 , 2 ,  a set 
of pairs of linear independent solutions of the Schrodinger equations involving the 
potentials V , ( r )  in the regions ai. Here the normalisation of the functions 4$ ' ) (k ,  r )  may 
be arbitrary but 4 y ' ( k ,  r )  should be normalised by the conditions 

w[~;')4j2'] = 1, r E f l j ,  j > l  (3) 
where W[4$]  is the Wronskian of the functions 4 and $. 

If the functions 4'n'!l(k, r )  and r$L2il(k, t )  are normalised in exactly the same way as 
fi-) and fi+) respectively, one can write the regular (physical) wavefunction $"'(k, r )  
corresponding to scattering by potential e(r) in the form 

where 

and the superscript T means that ti is transposed. 

functions 4;"' and 4;:; calculated at r = r j :  
Let us introduce the 2 X 2 matrices U, whose elements are the Wronskians of the 

w [4  1 4 i2)1 

(6) 
The system of fitting equations for the coefficients a!"', a l ,  and S, which is rather 

cumbersome in other approaches, can now be represented in the compact form 

6, = U1Lil+l, 2 S j ~ n .  (7) 

Thus, the set of fitting equations has been reduced to a chain of recurrence relations, 
which permits us to find immediately an equation connecting a l ( k )  with S ( k ) :  

1 
a l ( k )  ( = U&+I; U =  U1 . u2.. . U,. (8) 

Hence, for the Jost function $ ( k ) =  k e'"'/2/al(k) (Newton 1964), using equation (5 ) ,  
one can obtain at once 

where 
A =  det U = Il det Uj 
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while the quantities u, , (k)  are the elements of matrix U defined by equation (8). This 
completes the proof of the following proposition. 
Proposition 2. The relations (9) and (10) give the exa_ct expression for the Jost function 
& ( k )  corresponding to the approximate potential V(r ) .  

Let us consider a sequence of approximating potentials v(m)(r) of the above form, 
which is convergent to V(r) .  Since the sequence P m ) c a n  be adopted in such a way that 
1 pm)(r)l tends monotonically to I V(r) (  and therefore the corresponding sequence M‘” 
is uniformly bounded, we obtain the following proposition. 

Proposition 3. If a sequence pm)(r) tends to V ( r )  at each point r E (0, CO) such that 
I ?m)(r)l + 1 V(r)l monotonically and j: 1 V ( r ) -  pm)(r)l dr + 0 then the Jost function 
P , ( k )  corresponding to the potential V(r )  can be represented as a uniform limit: 

There are various potentials V , ( r )  for which the exact solutions 4ja) are known. By 
choosing different kinds of Vi, it is possible to develop fairly interesting approximations 
especially in the limit m + 00; in particular as follows. 

( a )  When V s  0 (no turning points) one may choose a piecewise constant potential 
as P(m) (here m is the number of the intervals) and then show that for LY Z /3 
( u ~ , ) ~  = o((uea),) and = O(1) where (uaP),  are matrix elements of U,. The 
smallness parameter is here just the reciprocal classical momentum k-’  - (E  - V)-l’’ 
so an appropriate treatment of the matrix product in (8) at m +CO would lead to the 
whole quasi-classical series whose nth term is an n-fold quadrature. This is a natural 
development of the layer approach used by Rayleigh (1912) to obtain the two first terms 
of the similar expansion for the wave equation. 

( b )  Using piecewise linear potentials as Pm) we would deal with the Airy functions 
as 4ja). Similarly to case ( a )  one can derive (at m +-CO) both far more powerful 
approximate integral representations of the Jost function as well as exact series. 

(c) The same can be done by means of quadratic interpolations of V(r) .  Integral 
representations that arise would now involve the parabolic cylinder functions. Some 
approximations of that kind are conventional in the theory of diffraction. 

As a matter of course equations like (8) are suitable for finding Green functions as 
well. The latter can be expressed in terms of Feynman’s path integrals so it is very 
important that approximations ( a ) ,  (b) ,  ( c )  which we have outlined, at finite m, are 
thought to be analogous with the standard one-dimensional approximate integration 
formulae of rectangles, trapeziums and the Simpson formula, respectively. 

In order to apply the approach developed to some concrete problems of atomic 
physics it should be mentioned that factors ( f i (k ) ) - l  corresponding to the exit and 
entrance channels are inserted in any matrix elements of inelastic processes. Each of 
them gives the amplitude of relative probability for the particle being near r = 0. The 
simplest example dealing with K-shell ionisation has been carried out by Chernyak and 
Nikolaev (1976). For a more realistic model it is reasonable to bear in mind that the 
expansion of the local part of the Hartree-Fock effective potential may be written in the 
form 

Hence, all the given terms can be taken into account exactly in Vl( r ) .  Similarly, it is 
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sufficient to put the Coulomb tail and the centrifugal term into Vnil(r) within the region 
On+,. With such choices the following estimates are true: 

VH&) - Vl(r) = o(r) a t r + O  

and 

VHF(r)- Vn+l(r)= O(e-'*") a t r+co  

with a constant A =0(1). Thus; the appropriate piecewise potential can readily be 
introduced in the infinite region (0, CO) such that sensible preciseness for 9 ( k )  may be 
guaranteed due to the estimates noted and equation (2). 
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